Recognition of human speech phonemes using a novel fuzzy approach
نویسندگان
چکیده
Recognition of human speech has long been a hot topic among artificial intelligence and signal processing researches. Most of current policies for this subject are based on extraction of precise features of voice signal and trying to make most out of them by heavy computations. But this focus on signal details has resulted in too much sensitivity to noise and as a result, the necessity of complex noise detection and removal algorithms, which composes a trade-off between fast or noise robust recognition. This paper presents a novel approach to speech recognition using fuzzy modeling and decision making that ignores noise instead of its detection and removal. To do so, the speech spectrogram is converted into a fuzzy linguistic description and this description is used instead of precise acoustic features. During the training period, a genetic algorithm finds appropriate definitions for phonemes, and when these definitions are ready, a simple novel operator consisting of low cost functions such as Max, Min, and Average makes the recognition. The approach is tested on a standard speech database and is compared with Hidden Markov model recognition system with MFCC features as a widely used speech recognition approach. # 2006 Published by Elsevier B.V.
منابع مشابه
Designing and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملپیشبینی قابلیت فهم همخوانها در افراد دارای شنوایی عادی با استفاده از مدلهای میکروسکوپی دارای معیار فاصله مختلف در بازشناساگر خودکار گفتار
In this study, recognition rates of consonants available in vowel-consonant-vowel structure in hearing tests and two microscopic models will be investigated. Such a syllable structure doesn’t exist in Farsi and Azerbaijani languages, but since the goal is only recognition of middle phoneme, according to hearing tests, listeners are able to properly recognize phonemes in clean speech conditions....
متن کاملمدل میکروسکوپی دوگوشی مبتنی بر فیلتر بانک مدولاسیون برای پیش گویی قابلیت فهم گفتار در افراد دارای شنوایی عادی
In this study, a binaural microscopic model for the prediction of speech intelligibility based on the modulation filter bank is introduced. So far, the spectral criteria such as the STI and SII or other analytical methods have been used in the binaural models to determine the binaural intelligibility. In the proposed model, unlike all models of binaural intelligibility prediction, an automatic ...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملPhoneme Classification Using Naive Bayes Classifier in Reconstructed Phase Space
A novel method for classifying speech phonemes is presented. Unlike traditional cepstral based methods, this approach uses histograms of reconstructed phase spaces. A Naïve Bayes classifier uses the probability mass estimates for classification. The approach is verified using isolated fricative, vowel, and nasal phonemes from the TIMIT corpus. The results show that a reconstructed phase space a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 7 شماره
صفحات -
تاریخ انتشار 2007